前端优化:首屏加载速度的实践

目录

目录

前言

多图片的懒加载

避免用户多次点击请求

骨架屏原理

结束语


前言

随着互联网技术的飞速发展,前端网页逐渐取代了传统客户端成为用户获取信息、进行交互的重要渠道,但是网页也有常见的弊端,比如网页首屏加载速度的快慢直接影响着用户体验,那么如何提升网页的首屏加载速度,成为了前端开发者必须面对的问题。本文将从多图片懒加载、避免用户多次点击请求以及骨架屏原理等方面,简单分享一下前端优化首屏加载速度的策略优化。欢迎大家在评论区留言交流。

多图片的懒加载

用户对网页体验要求越来越高的时候,再加上网页设计的丰富和多媒体内容的增加,图片成为了网页中不可或缺的元素。实际开发中可以看到过多的图片会导致网页加载速度变慢,影响用户体验,为了解决这个问题,前端开发者可以采用懒加载。

其实懒加载是一种只在需要时才加载图片,它通过在用户滚动到图片位置之前,不加载图片或只加载低分辨率的图片占位符,来减少首屏加载时的网络请求和带宽占用。当用户滚动到图片位置时,再加载实际的高清图片。这样可以在保证用户体验的前提下,有效减少首屏加载时间。

还有就是实现懒加载的方式有多种,比如使用JavaScript监听滚动事件,判断图片是否进入视口;或者使用Intersection Observer API,更加精确地判断图片与视口的交集情况,这些方式都可以根据实际需求进行选择和调整。那么接下来就分享一个简单的示例,以使用JavaScript和Intersection Observer API实现图片懒加载的简单示例,具体的示例代码如下所示:

<!DOCTYPE html>  
<html lang="en">  
<head>  
<meta charset="UTF-8">  
<meta name="viewport" content="width=device-width, initial-scale=1.0">  
<title>图片懒加载示例</title>  
<style>  
  .lazy-image {  
    /* 初始状态下使用低分辨率图片或占位符 */  
    background: url('placeholder.jpg') no-repeat center center;  
    background-size: cover;  
    width: 300px;  
    height: 200px;  
  }  
</style>  
</head>  
<body>  
  
<img src="placeholder.jpg" data-src="real-image1.jpg" class="lazy-image" alt="Image 1">  
<img src="placeholder.jpg" data-src="real-image2.jpg" class="lazy-image" alt="Image 2">  
<!-- 更多图片... -->  
  
<script>  
// 监听图片与视口的交集情况  
const observer = new IntersectionObserver((entries, observer) => {  
  entries.forEach(entry => {  
    if (entry.isIntersecting) {  
      // 当图片进入视口时,加载真实图片  
      const lazyImage = entry.target;  
      const realSrc = lazyImage.dataset.src;  
      lazyImage.src = realSrc;  
      // 停止观察当前图片  
      observer.unobserve(lazyImage);  
    }  
  });  
});  
  
// 获取所有需要懒加载的图片  
const lazyImages = document.querySelectorAll('.lazy-image');  
  
// 对每张图片应用观察器  
lazyImages.forEach(image => {  
  observer.observe(image);  
});  
</script>  
  
</body>  
</html>

在上面的示例代码中,把需要懒加载的图片的src属性替换为data-src属性,并使用一个占位符作为背景图,然后使用Intersection Observer API来监听图片是否进入视口,一旦进入视口,就将data-src的值赋给src属性,从而触发图片的加载。

避免用户多次点击请求

还有一种情况在前端开发中经常遇到,那就是在网页中有些功能可能需要用户进行多次点击或输入操作才能触发,但是如果这些操作会导致额外的网络请求或数据处理,那么就会增加首屏加载的时间,为了避免这种情况,我们前端开发者可以采取以下措施:

  • 使用防抖和节流:防抖是在一定时间内只触发一次函数,节流是在一定时间内只触发有限次数的函数,这两种技术都可以有效减少用户连续点击或输入导致的额外请求。
  • 合并请求:将多个相关的网络请求合并成一个请求发送,可以减少网络传输的时间和带宽占用,比如可以将多个图片的URL合并成一个数组,一次性发送给后端进行处理。
  • 缓存数据:对于不需要实时更新的数据,可以将其缓存在前端或后端,避免重复请求,也可以通过设置合理的缓存策略来减少不必要的网络请求。

这里也来分享一个简单的使用示例,以使用防抖技术实现避免用户多次点击请求的示例,具体代码如下所示:

function debounce(func, wait) {  
  let timeout;  
  return function executedFunction(...args) {  
    const context = this;  
    clearTimeout(timeout);  
    timeout = setTimeout(() => func.apply(context, args), wait);  
  };  
}  
  
// 假设有一个需要防抖的函数  
function fetchData() {  
  // 发送网络请求...  
  console.log('Fetching data...');  
}  
  
// 使用防抖技术包装函数  
const debouncedFetchData = debounce(fetchData, 500);  
  
// 用户点击事件绑定防抖后的函数  
document.getElementById('myButton').addEventListener('click', debouncedFetchData);

在上面的示例代码中,定义了一个debounce函数,它接受一个需要防抖的函数和一个等待时间作为参数。在防抖函数内部,使用setTimeout来延迟执行原函数,并在每次调用防抖函数时清除上一次的定时器,然后只有在最后一次调用防抖函数后等待指定的时间,才会执行原函数。

骨架屏原理

作为前端开发者,在日常开发中对于骨架屏的使用应该非常熟悉,骨架屏是一种在内容加载期间展示给用户的一种视觉占位符,尤其是在用户等待数据加载时,展示一个大致的页面框架和关键元素,让用户提前感知到页面的结构,从而减少用户等待的焦虑感,它可以让用户在等待过程中感知到页面的加载进度,提升用户体验。

实现骨架屏的方式有多种,比如使用CSS动画和SVG等技术绘制一个简单的页面框架;或者使用专门的骨架屏库来快速生成,但是无论使用哪种方式,我们都需要注意以下几点:

  1. 保持与真实页面的结构和布局一致,让用户能够快速识别和理解;
  2. 加载完成后要及时隐藏骨架屏,避免影响用户体验;
  3. 根据不同的页面和场景选择合适的骨架屏样式和动画效果。

所以这里也来分享一个简单的使用示例,以一个简单的CSS实现骨架屏的示例,具体代码如下所示:


<!DOCTYPE html>  
<html lang="en">  
<head>  
<meta charset="UTF-8">  
<meta name="viewport" content="width=device-width, initial-scale=1.0">  
<title>骨架屏示例</title>  
<style>  
  .skeleton {  
    /* 骨架屏样式 */  
    background: #f3f3f3;  
    border-radius: 4px;  
    height: 200px; /* 根据实际内容调整高度 */  
    width: 100%; /* 根据实际内容调整宽度 */  
    margin-bottom: 20px; /* 根据需要添加 */  
  }  
  
  /* 加载完成后隐藏骨架屏 */
.loaded .skeleton {
display: none;
}
</style>
</head> 
<body>
 <!-- 骨架屏容器 -->
 <div class="skeleton" id="skeleton"></div>
 <!-- 真实内容容器 --> 
<div class="content" id="content" style="display: none;"> 
<!-- 这里放置真实的内容,如图片、文本等 --> 
<h1>欢迎来到我的网站</h1> <p>这是一些示例内容...</p>
 <!-- 更多内容... --> </div> 
<script>
 // 假设这是一个模拟异步加载真实内容的函数 
function loadContent() { 
// 模拟异步加载过程(使用setTimeout)
 setTimeout(() => { 
// 隐藏骨架屏
 document.getElementById('skeleton').classList.add('loaded'); 
// 显示真实内容 
document.getElementById('content').style.display = 'block';
 }, 2000);
 // 假设加载需要2秒 
} 
// 页面加载完成后立即执行
 window.onload = loadContent; 
</script> 
</body> 
</html> 

在上面的示例代码中,创建了一个骨架屏容器和一个真实内容容器,然后在页面加载完成后,通过loadContent函数模拟异步加载真实内容的过程,在这个加载过程中,骨架屏容器可见,真实内容容器隐藏,当真实内容加载完成后,通过修改CSS类名来隐藏骨架屏并显示真实内容。通过这种方式,我们可以在用户等待真实内容加载时,展示一个与页面结构相似的骨架屏,提升用户体验,而且我们也可以根据实际需求调整骨架屏的样式和动画效果,使其更加符合页面的整体风格。

结束语

通过本文的分享介绍,尤其是作为前端开发者来看,上述几个问题都是很有代表性的,也是日常开发中经常会遇到的,尤其是现在前端技术的不断发展和用户对网页加载速度的要求日益提高,骨架屏作为一种有效的用户体验优化手段,正逐渐受到开发者的青睐,通过为页面加载过程提供视觉反馈,骨架屏能够有效缓解用户的等待焦虑,提高用户的满意度。但是在设计和实现骨架屏时,我们需要注意保持其简洁明了,与页面整体风格相协调,因为合理的动画效果和过渡效果也能进一步提升用户体验。我个人觉得前端优化首屏加载速度需要从多个方面入手,借助通过采用多图片的懒加载、避免用户多次点击请求以及使用骨架屏等技术手段,可以有效提升网页的首屏加载速度提升用户体验,但是也需要注意在优化过程中保持代码的清晰和可维护性,为后续的维护和升级打下基础。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/759389.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Apple - Text Layout Programming Guide

本文翻译整理自&#xff1a;Text Layout Programming Guide&#xff08;更新日期&#xff1a;2014-02-11 https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/TextLayout/TextLayout.html#//apple_ref/doc/uid/10000158i 文章目录 一、文本布局编程指…

使用ioDraw,AI绘图只需几秒钟!

只需几秒钟&#xff0c;就能将文字或图片转化为精准的思维导图、流程图、折线图、柱状图、饼图等各种图表&#xff01; 思维导图 思维导图工具使用入口 文字转思维导图 将文本大纲或想法转换成可视化的思维导图&#xff0c;以组织和结构化您的想法。 图片转思维导图 从现有…

一加12搞机(kernelsu+lsposed)

刷机 温馨提示&#xff1a;如果你不知道root的意义在哪&#xff0c;建议不要解锁和root&#xff0c;到时候救砖或者回锁都挺麻烦。 刷全量包 最新版的系统没有更新推送&#xff0c;所以去一加社区[0]找了个全量包来刷&#xff0c;。安装方式可以看帖子里的内容&#xff0c;说…

XML简介XML 使用教程XML的基本结构XML的使用场景

学习总结 1、掌握 JAVA入门到进阶知识(持续写作中……&#xff09; 2、学会Oracle数据库入门到入土用法(创作中……&#xff09; 3、手把手教你开发炫酷的vbs脚本制作(完善中……&#xff09; 4、牛逼哄哄的 IDEA编程利器技巧(编写中……&#xff09; 5、面经吐血整理的 面试技…

RocketMQ实战:一键在docker中搭建rocketmq和doshboard环境

在本篇博客中&#xff0c;我们将详细介绍如何在 Docker 环境中一键部署 RocketMQ 和其 Dashboard。这个过程基于一个预配置的 Docker Compose 文件&#xff0c;使得部署变得简单高效。 项目介绍 该项目提供了一套 Docker Compose 配置&#xff0c;用于快速部署 RocketMQ 及其…

【图像超分辨率】一个简单的总结

文章目录 图像超分辨率(Image Super-Resolution, ISR)1 什么是图像超分辨率&#xff1f;2 图像超分辨率通常有哪些方法&#xff1f;&#xff08;1&#xff09;基于插值的方法&#xff08;2&#xff09;基于重建的方法&#xff08;3&#xff09;基于学习的方法&#xff08;LR im…

新工具:轻松可视化基因组,部分功能超IGV~

本次分享一个Python基因组数据可视化工具figeno。 figeno擅长可视化三代long reads、跨区域基因组断点视图&#xff08;multi-regions across genomic breakpoints&#xff09;、表观组数据&#xff08;HiC、ATAC-seq和ChIP-seq等&#xff09;可视化、WGS中的CNV和SV可视化等。…

VRay是什么?有什么特点?渲染100邀请码1a12

Vray是由Chaos Group开发的高性能渲染引擎&#xff0c;能为不同的三维建模软件提供图像和动画渲染服务&#xff0c;它有以下几个特点。 1、Vray采用了先进的光线追踪技术&#xff0c;能够模拟真实世界中光线的传播和反射&#xff0c;生成的图像和动画十分逼真。 2、Vray提供了…

通俗范畴论4 范畴的定义

注:由于CSDN无法显示本文章源文件的公式,因此部分下标、字母花体、箭头表示可能会不正常,请读者谅解 范畴的正式定义 上一节我们在没有引入范畴这个数学概念的情况下,直接体验了一个“苹果1”范畴,建立了一个对范畴的直观。本节我们正式学习范畴的定义和基本性质。 一个…

web刷题记录(7)

[HDCTF 2023]SearchMaster 打开环境&#xff0c;首先的提示信息就是告诉我们&#xff0c;可以用post传参的方式来传入参数data 首先考虑的还是rce&#xff0c;但是这里发现&#xff0c;不管输入那种命令&#xff0c;它都会直接显示在中间的那一小行里面&#xff0c;而实际的命令…

centos 破解密码

重启您的CentOS系统。 在GRUB引导加载器启动过程中&#xff0c;当看到启动画面时&#xff0c;按下e键进入编辑模式。 找到以 linux16 或 linux 开头的启动行。 在该行的末尾添加 rd.break 或者ro&#xff08;只读&#xff09;修改为 rw 加init/sysroot/bin/sh参数&#xff0…

HTTPS是什么?原理是什么?用公钥加密为什么不能用公钥解密?

HTTPS&#xff08;HyperText Transfer Protocol Secure&#xff09;是HTTP的安全版本&#xff0c;它通过在HTTP协议之上加入SSL/TLS协议来实现数据加密传输&#xff0c;确保数据在客户端和服务器之间的传输过程中不会被窃取或篡改。 HTTPS 的工作原理 客户端发起HTTPS请求&…

python基础_类

在Python中&#xff0c;类&#xff08;Class&#xff09;是面向对象编程&#xff08;OOP&#xff09;的核心概念之一。类提供了一种创建新对象的模板&#xff0c;这些对象通常被称为类的实例或对象。以下是关于Python类的一些关键点和特性&#xff1a; 定义类 类通过class关键…

深度学习基准模型Transformer

深度学习基准模型Transformer 深度学习基准模型Transformer&#xff0c;最初由Vaswani等人在2017年的论文《Attention is All You Need》中提出&#xff0c;是自然语言处理&#xff08;NLP&#xff09;领域的一个里程碑式模型。它在许多序列到序列&#xff08;seq2seq&#xf…

leetCode.97. 交错字符串

leetCode.97. 交错字符串 题目思路 代码 class Solution { public:bool isInterleave(string s1, string s2, string s3) {int n s1.size(), m s2.size();if ( s3.size() ! n m ) return false;vector<vector<bool>> f( n 1, vector<bool> (m 1));s1 …

C语言刷题小记

前言 本篇博客和大家分享一些C语言的OJ题目&#xff0c;希望大家可以通过这些题目进一步提升自己的编程能力&#xff0c;如果你对本篇内容感兴趣&#xff0c;可以一键三连&#xff0c;多多关注&#xff0c;下面进入正文部分。 题目1 十六进制转十进制 描述 BoBo写了一个十六…

【机器学习】机器学习的重要技术——生成对抗网络:理论、算法与实践

引言 生成对抗网络&#xff08;Generative Adversarial Networks, GANs&#xff09;由Ian Goodfellow等人在2014年提出&#xff0c;通过生成器和判别器两个神经网络的对抗训练&#xff0c;成功实现了高质量数据的生成。GANs在图像生成、数据增强、风格迁移等领域取得了显著成果…

qt文件如何打包成一个独立的exe文件

QT官方给我们安装好了打包软件&#xff0c;就在你QT安装的位置 把这个在cmd打开C:\Qt\6.7.1\mingw_64\bin\windeployqt6.exe&#xff08;或复制地址&#xff09; 然后把要打包项目的exe复制到新的空文件夹&#xff0c;再复制他的地址 按回车后生成新文件 再下载打包软件&#…

使用pyqt5编写一个七彩时钟

使用pyqt5编写一个七彩时钟 效果代码解析定义 RainbowClockWindow 类初始化用户界面显示时间方法 完整代码 在这篇博客中&#xff0c;我们将使用 PyQt5 创建一个简单的七彩数字时钟。 效果 代码解析 定义 RainbowClockWindow 类 class RainbowClockWindow(QMainWindow):def _…

【乐器识别系统】图像识别+人工智能+深度学习+Python+TensorFlow+卷积神经网络+模型训练

一、介绍 乐器识别系统。使用Python为主要编程语言&#xff0c;基于人工智能框架库TensorFlow搭建ResNet50卷积神经网络算法&#xff0c;通过对30种乐器&#xff08;‘迪吉里杜管’, ‘铃鼓’, ‘木琴’, ‘手风琴’, ‘阿尔卑斯号角’, ‘风笛’, ‘班卓琴’, ‘邦戈鼓’, ‘…